电池包热管理仿真流程及前处理技巧

众所周知,新能源汽车锂离子电池的最佳工作温度只在一个狭小的(20-35℃)范围,不仅其本身在工作时会产生热量,而且还会受周围环境温度的影响,故需要高效的热管理系统将电池维持在一定范围内。而仿真分析应用于系统开发可以缩短开发周期和降低开发成本等。仿真一般分为零件级别的三维(3D)性能仿真和系统级别的匹配与策略的一维(1D)仿真。首先来讲讲三维CFD仿真。

  • 仿真流程

电池热管理仿真流程与其他CFDCHT仿真流程类似,主要基于产品数模对其进行必要的简化(前处理),再对数模进行离散处理(划分网格),然后对系统施加一定的边界条件和选取适合的计算模型后,交由仿真软件进行计算,最后对计算结果进行相应的处理,提取相关数据用于编写分析报告(后处理)。流程归纳如下图:

电池热管理仿真问题,其实就是电子元器件散热问题,只是这个电子元器件有几个特殊性:数量众多,结构复杂,发热量还不均匀(随时间变化)等,所以如何去平衡计算量(网格量)和计算时间,对于仿真工程师来说是个挑战。比如下图电池包,一共有36个模组,分上下两层摆放,水冷系统采用“三明治”结构,下方水冷管还是口琴管结构,整个液冷系统较复杂,而且模组较多,对仿真前处理画网格带来很大的难度。

 

Audi e_tron电池包

好在市面上的商业CFD软件都比较成熟,操作越来越便利性的同时,计算效率也大大提高,也算是为解决工程问题带来了福音。常见的CFD软件都能对电池进行热仿真,比如:Star-ccm+,Fluent,Icepack, FloEFD,FloTHERM和TAItherm等等。虽然这些软件仿真流程都相似,但也有各自的特点,有的所有流程都在一个界面下搞定,比如CD-adapco的Star-ccm+(现已被西门子收购),也有几个软件相互配合,发挥各自优势的,比如ANSYS Fluent。

ANSYS Fluent仿真流程

  • 前处理

众所周知,求解三维CFD问题,关键是画出一套高质量数量适中的网格,网格好坏对求解结果影响最大,而前处理对网格划分起决定性作用。而笔者认为,液冷电池包前处理的难点在于电池模组的处理:

1. 模组结构复杂,每个模组包括电芯,导热垫,绝缘膜,极耳和busbar等;

2. 数量众多,一个电池包少则几十个电芯,多则上千个,比如特斯拉的圆柱电芯,整个电池包好几千个电芯;

3. 网格尺寸不好控制,电芯的极耳和busbar等厚度尺寸较小,控制网格数量上带来很大的挑战。

而流体域部分的处理(指水冷板和流道),由于现今制造工艺日趋成熟,流道大多比较规整,而且并联或者对称结构较多,所以流体域处理相对来说简单些。笔者曾经秉着对网格的高质量要求,使用Hypermesh花一个多星期手动拉伸出一套全六面体的软包电芯网格,而只用了两天前处理完液冷板并画出完整网格,所以可以感受下电池包建模的难易。

模组前处理根据冷却方式和计算方法的不同稍有点差别,下面分别列举方形和软包电芯模组的前处理案例来分析:

下图是常见的方形模组,采用底部铺设液冷板的冷却方式,主要研究对象是液冷板的冷却换热效果。根据热量生成与传递路径,保留了busbar和电芯极耳,电芯之间的泡棉,电芯周围的绝缘膜和底部导热材料。

再举个大众风冷电池包的例子,每个模组由N片软包电芯组成,每个电芯外部还有比较薄的散热片包裹,由于是风冷,跟空气接触到的地方都需要保留,所以模组端板,电芯端盖,散热片,busbar和总正总负等都保留并做了一定的简化。

上面两个例子有个共同点是都保留了电芯的极耳和busbarbusbar的温度在冷却的时候能很好的反应模组的最高温度,不论是研究busbar对模组最高温度的影响【1】还是后期一维仿真的标定,都需要这个点的温度,所以busbar在前处理建模的时候推荐保留。

 再来看看流体域部分,液冷电池包主要通过冷却液进行热交换,所以此处流体域部门是指水冷板内的水流道(包内空气处理方法将在以后章节讲解),前处理需要注意的是尽可能保留内部流道特征,特别是变径,弯头等一些局部阻力较大的区域,而尽量简化管路外部特征,比如快插接头,温度传感器等一些不直接参与换热的元件,这样能减少些网格量。

虽然现在EV的电池包电量越来越多,电池包也越做越大,但多数采用模块化设计,包内的热管理系统也是如此,如下图冷却架构,8块水冷板采用4P2S的方式连接在一起,而这8块水冷板内部流道是相同的设计,所以前处理相对来说简单。方案设计前期更是可以只做流体域CFD仿真计算单板流量,后期可以以分支为单位优化水板流道设计,大大提高计算效率。

总体来说,前处理还是模组的难度大一点,需要保留哪些简化哪些部件斟酌的点多一些。但也不是绝对,关键是看研究问题的关注点在哪,需要保留哪些和简化哪些都可以灵活处理。

参考文献:

1. Influence of terminal tabs/busbar ohmic heat on maximum cell temperature of a Li-ion battery system for PHEV applications, AVL, 2012, Kim Yeow.

推荐阅读

·ANSYS中文版(2020R2)来了。。。

·仿真学习资料(1200G)免费分享

· 一维(1D)系统仿真简介

· 一维系统仿真资料分享(AMESim)

·电池热管理仿真:一维电池热模型

关于我们

  CAE交流之家以仿真交流学习为核心,打造全国最大,最自由的CAE交流社区,您身边的仿真小帮手。加入CAE交流之家微信群和有任何需求及建议,可以联系小编(微信:ws851907214),备注:CAE交流之家

点赞

发表回复

电子邮件地址不会被公开。必填项已用 * 标注